New Directions in Hard and Soft X-Ray Photoemission with Synchrotron Radiation, Including Standing Wave Excitation

Chuck Fadley Dept. of Physics, UC Davis

Materials Sciences Division Ince Berkeley National Laboratory

Supported by: DOEN BNL Materials Sciences Division "Nanoscale Magnetic Materials" and LDRD DOE, BES, Materials Sciences, X-Ray Scattering Program ARO-Multi-University Research Initiative: "Emergent Phenomena at Mott Oxide Interfaces" Peter Grünberg Institute, PGI 6, Jülich Research Center APTCOM Project, Triangle de Physique, Paris

Seminar at the Federal University of Parana State, 7 April 2016

+ experimental and theoretical collaborators at LBNL, UCB, UCD, in the U.S., Europe, and Asia

Other Institutions and Collaborators

Experiments/Data Analysis
 Sample Synthesis/Charac.
 Theory/Modeling
 A. Gray^{1,2}, A. Kaiser^{1,2,8}, G. Conti^{1,2}, C. Papp^{1,2,*}, B. Balke^{1,2,+}, S. Ueda^{3,4},
 Y. Yamashita^{3,4}, K. Kobayashi^{3,4}, M. Gorgoi⁵, S.-H. Yang⁶, L. Plucinski⁷, S. Döring⁸,
 U. Berges⁸, M. Huijben^{9,10}, D. Buergler⁷, F. Hellman^{2,11}, E. Rotenberg¹²,
 A. Bostwick¹², J. Minar¹³, J. Braun¹³, H. Ebert¹³, P. Krüger¹⁴, J. Fujii¹⁵,
 G. Panaccione¹⁵, C. Caspers⁷, M. Mueller⁷, B.C. Sell^{1,2,#}, M. W. West², M. Press²,
 F. Salmassi², J.B. Kortright², E. Gullikson², S.S.P. Parkin⁶, A. Gloskovskii¹⁶, W. Drube¹⁶,
 F. Kronast⁵, C. Westphal⁸, V. Strocov¹⁸, M. Kobayashi¹⁸, J.-P. Rueff¹⁹, C.M. Schneider⁷, R. Ramesh^{2,9,11}, J. Son¹⁷, P. Moetakef¹⁷, S. Stemmer¹⁷, A. Janotti¹⁷,
 technische universität

U technische universität dortmund

¹Physics, UC Davis; ²Mat. Sci. Div., LBNL; ³SPring-8; ⁴NIMS; ⁵HZB-BESSY Berlin; ⁶IBM Almaden; ⁷Research Center Jűlich; ⁸Physics, Tech. Univ. Dortmund; Physics; ⁹Mat. Sci., UC Berkeley; ¹⁰Univ. of Twente; ¹¹ Physics, UC Berkeley; ¹²ALS, LBNL; ¹³Phys. Chem., Univ. Munich; ¹⁴Univ. Bourgogne, Dijon; ¹⁵TASC, Trieste; ¹⁶Hasylab, Hamburg; ¹⁷UC Santa Barbara; ¹⁸SLS: ¹⁹Soleil; ²⁰Earth and Enviro. Science, Univ. Munich; Pres. address: [&]SPECS; ^{*}Univ. Erlangen; ⁺Univ. Mainz; [#]Wright-Patterson AFB

UNIVERSITY OF TWENTE

advanced technology and nanoscience

tecnologie avanzate e nanoscienza

national

Photoemission from surfaces, complex bulk materials, byried layers, interfaces

What do we want to know?

- Atomic structure, lattice/octahedral distortions
- Depth profiles of composition, optical properties, magnetization, from surface inward, and at interfaces
- Core-levels → element-specific binding energies, charge states electronic configurations, magnetic moments/magnetization
- Band offsets, depth-dependent pot'ls.
- Valence-band densities of states, element-resolved, behavior near E_F (XPS limit)
- Valence-band dispersions, via depth-, angle-, and elementresolved photoemission (ARPES limit)
- Lateral resolution in all of the above through microscopy

X-ray photoemission: some key elements

Photoemission from complex materials, heterostructures, and interfaces

Three ways to address the limitations of traditional photoemission:

➤ Use of harder x-ray excitation (SXPS→2 keV, HXPS, HAXPES→10 keV) for deeper probing: core levels and valence DOSs, incl. soft and hard x-ray ARPES

Use of soft and hard x-ray standing waves, total reflection, other x-ray optical effects, resonant excitation, to selectively look below the surface, at buried interfaces, including ARPES

Use of differentially-pumped systems to provide multi-Torr ambient pressure photoemission, more real-world conditions for studying surface chemical processes, catalysis, electrochemistry

The reason for higher photon energies

 "Looking Deeper: Angle-Resolved Photoemission with Soft and Hard Xrays", CSF, Synchrotron Radiation News <u>25</u>, 26 (2012)

Boekelheide, Gray et al. (Hellman, Fadley Groups) PRL 105, 236404 (2010)

Hard x-ray ARPES--GaAs and DMS Ga_{0.97}Mn_{0.03}As Comparing Experiment (3.2 keV, 30K) and One-Step KKR Theory

Hard X-Ray Photoemission (HXPS, HAXPES, HX-PES, HIKE...) in the World

7th International Conference on Hard X-Ray Photoemission

11-15 September, 2017 At LBNL Sponsors: LBNL & SLAC Co-Chairs: C. Fadley, Z. Hussain, P. Pianetta

Photoemission from complex materials, heterostructures, and interfaces

Three ways to address the limitations of traditional photoemission:

> Use of harder x-ray excitation (SXPS \rightarrow 2 keV, HXPS, HAXPES \rightarrow 10 keV) for deeper probing: core levels and valence DOSs, incl. soft <u>and</u> hard x-ray ARPES

Use of soft and hard x-ray standing waves, total reflection, other x-ray optical effects, resonant excitation, to selectively look below the surface, at buried interfaces, including ARPES

Use of differentially-pumped systems to provide multi-Torr ambient pressure photoemission, more real-world conditions for studying surface chemical processes, catalysis, electrochemistry

Three ways to scan a standing wave formed in reflection from single-crystal Bragg planes, or a <u>multilayer mirror</u>

+Same general forms if photon energy is scanned

With thanks to Martin Tolkiehn, Dimitri Novikov, DESY

Form of rocking curve is unique to position of emitter

X-ray optical effects in photoelectron or x-ray emission from a multilayer structure

"Depth-resolved photoemission spectroscopy from surface and buried layers with soft X-ray standing waves", S.-H. Yang, B.S. Mun, A.W. Kay S.-K. Kim, J.B. Kortright, J.H. Underwood, Z. Hussain, C.S. Fadley, Surf. Sci. <u>461</u>, L557 (2000).

"Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: total reflection, standing-wave excitation and resonant effects", S.-H. Yang et al., J. Appl. Phys. <u>113</u>, 073513 (2013); downloadable Yang XRO software package: https://sites.google.com/a/lbl.gov/yxro/home

Multilayer GTO/STO – Resonance effects

P. Moetakef, S. Stemmer, UCSB

Resonant effects: $SrTiO_3/GdTiO_3$ multilayer Sweeping the photon energy through the Gd M₅ resonance

Going above the edge: A new trick to focus better on buried interfaces→ Observing a 2D electron gas at the STO/GTO interface

Photoemission from complex materials, heterostructures, and interfaces

Three ways to address the limitations of traditional photoemission:

> Use of harder x-ray excitation (SXPS \rightarrow 2 keV, HXPS, HAXPES \rightarrow 10 keV) for deeper probing: core (HXPD) and valence DOSs or soft or hard x-ray ARPES

Use of soft and hard x-ray standing waves, total reflection, other x-ray optical effects, resonant excitation, to selectively look below the surface, at buried interfaces, including soft x-ray ARPES

Use of differentially-pumped systems to provide multi-Torr ambient pressure photoemission, more real-world conditions for studying surface chemical processes, catalysis, electrochemistry

Ambient Pressure XPS→HXPS Systems

1st Gen

2000: Differentiallypumped electrostatic transfer lens allows operation at p ~ 5 torr (equilibrium vapor pressure of water at 0 °C)

D.F. Ogletree, H. Bluhm, G. Lebedev, C.S. Fadley, Z. Hussain, M. Salmeron, Rev. Sci. Instrum. <u>73</u> (2002) 3872.

2nd Gen

2005: The first commercial system from Specs. Installed at ALS and BESSY

2009: Fast 2D detector and superior electron transmission from Scienta Hipp 4000 installed at ALS BL9.3.2. New Specs at BL 11.0.2

> M.E. Grass, P.G. Karlsson, F. Aksoy, M. Lundqvist, B. Wannberg, B.S. Mun, Z. Hussain, Z. Liu, Rev. Sci. Instrum. <u>81</u>, 053106 (2010)

AP XPS/HXPS systems in use/ in commissioning or construction: ALS, BESSY, ALBA, MAXLAB, SSRL, NSLS, Soleil, Photon Factory, Sirius... First <u>hard x-ray</u> endstation @ ALS BM, + soft/hard x-ray @ EMIL-BESSY →100 Torr, even 1 atm (Nilsson, SSRL)

Looking *in operando* at the solid-liquid interface of an electrode The dip-stick method with hard x-rays ->higher pressures

20 Torr, Room Temperature: "Dipstick Method"

Axnanda, Crumlin, Mao, Rani, Chang, Karlsson, Edwards, Lundqvist, Moberg, Ross, Hussain, Liu, Scientific Reports 5, 09788 (2015)

Soft → hard x-rays and standing waves: a few example studies

Fe/MgO-tunnel junction

Depth-resolved composition, chemical states,

magnetization

 $SrTiO_3/La_{2/3}Sr_{1/3}MnO_3$ -tunnel junction

Depth-resolved composition, dielectric properties, bonding,

k-resolved electronic structure

SrTiO₃/GdTiO₃-2D electron gas Depth-resolved composition, charge states, k-resolved electronic structure

BiFeO₃/(Ca,Ce)MnO₃ interface (Ferroelectric/Mott insulator) Depth-resolved electronic structure from near-total-reflection (NTR) angle scans

Fe₂O₃ reacting with NaOH, CsOH, and H₂O Using standing wave XPS to probe the solid/gas and solid/liquid interface: some first ambient pressure results

Three ways to scan a standing wave formed in reflection from single-crystal Bragg planes, or a <u>multilayer mirror</u>

MgO/Fe tunnel junctionthe real interface

Meyerheim PRL 87, 076102 (2001).

Is there FeO at the interface?
What is the density of states at the interface?
△₁ band controls tunneling?
Can we see bands at epitaxial interfaces? (Soleil-June, 2014!)

Butler et al.,PRB <u>63,</u> 054416 (2001); Mathon & Umerski, PRB 63, 220403 (2001); Mertig et al., PRB <u>73</u>, 214441 (2006)

MgO/Fe tunnel junction- Δ_1 states dominant in tunneling for ideal interface

Majority Density of States for Fe|MgO|Fe

Butler et al., PRB 63, 054416 (2001)

Soft x-ray standing-wave wedge scans through a magnetic tunnel junction

Yang, Balke et al., Phys. Rev. B 84, 184410 (2011)

Balke, Yang et al., Phys. Rev. B <u>84</u>, 184410 (2011)

Final profiles of concentration and magnetization

Rev B 84 184410 (2011)

Standing wave/wedge derivation of depth-dependent densities of states: Fe/MgO tunnel junction

→Oxidation at the Fe/MgO interface

Conclusions: Standing-Wave Soft X-Ray Photoemission of the Fe/MgO Interface

- Measured the depth distribution of concentration and magnetization (via core-level PMCD) through the interface with ca. ±2 Å resolution
- Resolved the density of states into interface and bulk Fe components, indicating Fe oxidation at the interface
- Demonstrated the standing-wave wedge approach as a new and powerful way to study buried interfaces.

Soft →hard x-rays and standing waves: a few example studies

Fe/MgO-tunnel junction

Depth-resolved composition, chemical states,

magnetization

SrTiO₃/La_{2/3}Sr_{1/3}MnO₃-tunnel junction

Depth-resolved composition, dielectric properties, bonding, k-resolved electronic structure

> SrTiO₃/GdTiO₃-2D electron gas Depth-resolved composition, charge states, k-resolved electronic structure

BiFeO₃/(Ca,Ce)MnO₃ interface (Ferroelectric/Mott insulator) Depth-resolved electronic structure from near-total-reflection (NTR) angle scans

Fe₂O₃ reacting with NaOH, CsOH, and H₂O Using standing wave XPS to probe the solid/gas and solid/liquid interface: some first ambient pressure results

SrTiO₃/La_{0.7}Sr_{0.3}MnO₃ A classic magnetic tunnel junction

SrTiO₃

- > Band insulator (E_g =3.4 eV)
- Low temperature

superconductor

$La_{0.7}Sr_{0.3}MnO_3$

- Half-metallic ferromagnet
- Colossal magnetoresistive material

Alex Grav

 \rightarrow Stanford \rightarrow Temple U.

SrTiO₃/La_{0.7}Sr_{0.3}MnO₃ interface

- What does the interface look like?
- How are bonding and atomic/electronic structure at the interface different?

A. X. Gray, C. Papp, B. Balke, S.-H. Yang, M. Huijben, E. Rotenberg, A. Bostwick, S. Ueda, Y. Yamashita, K. Kobayashi, E. M. Gullikson, J. B. Kortright, F. M. F. de Groot, G. Rijnders, D. H. A. Blank, R. Ramesh, CSF, PRB 82, 205116 (2010); EPL 104, 17004 (2013)

Standing wave/rocking curve analysis of an epitaxial

SrTiO₃/La_{0.67}Sr_{0.33}MnO₃ interface: near-resonant soft x-ray excitation

Fitting of Rocking Curves—All Elements Present, Soft and Hard X-rays

Gray et al., Phys. Rev. B 82, 205116 (2010)

TEM with EELS+HAADF-Confirms Conclusions of Standing-Wave Photoemission

STO/LSMO-Resonant soft x-ray standing wave/rocking curves at 833 eV: core photoelectron peaks compared to calculated standing-wave field

STO/LSMO-Explaining the Difference Between Mn 3p and Mn 3s behavior

SrTiO₃ and La_{0.67}Sr_{0.33}MnO₃ band structures and DOS

Depth-Resolved Soft X-Ray ARPES? Cryocooling to supress phonon smearing: DW factor

ALS BL 7.0.2

Conclusions: Soft and Hard X-Ray Standing-Wave PS and ARPES of SrTiO₃/La_{0.7}Sr_{0.3}MnO₃

- Depth distribution of concentration and index of refraction through the interface with ca. ±2 Å resolution, confirmed by TEM/EELS/HAADF
- Interface Mn 3p binding energy shift consistent with crystal field distortion via AIM calculations
- Interface-specific changes in <u>k-resolved</u>
 electronic structure
- Results qualitatively in agreement with freeelectron final state and one-step theory
- Future applications to other interfaces

Gray et al., Phys. Rev. B 82, 205116 (2010); Europhysics Letters 104, 17004 (2013)

Soft →hard x-rays and standing waves: a few example studies

Fe/MgO-tunnel junction

Depth-resolved composition, chemical states,

magnetization

 $SrTiO_3/La_{2/3}Sr_{1/3}MnO_3$ -tunnel junction

Depth-resolved composition, dielectric properties, bonding,

k-resolved electronic structure

SrTiO₃/GdTiO₃-2D electron gas

Depth-resolved composition, charge states,

k-resolved electronic structure

BiFeO₃/(Ca,Ce)MnO₃ interface (Ferroelectric/Mott insulator) Depth-resolved electronic structure from near-total-reflection (NTR) angle scans

Fe₂O₃ reacting with NaOH, CsOH, and H₂O Using standing wave XPS to probe the solid/gas and solid/liquid interface: some first ambient pressure results

SrTiO₃/GdTiO₃ An interface 2D electron gas

S. Nemšák et al., http://arxiv.org/ abs/1508.01832

SrTiO₃

- > Band insulator (E_g =2.3 eV)
- Low temperature superconductor

GdTiO₃/SrTiO₃ interface

Two-dimensional electron gas (2DEG) at the interface between two insulators (Appl. Phys. Lett. 99, 232116, 2011)

GdTiO₃

> Mott-Hubbard insulator

- Sheet carrier density on the order of 3x10¹⁴ cm⁻²
- Ferromagnetism in the 2DEG at the interface (*Phys. Rev. X* 2,021014, 2012)

S. Nemšák, G. Pálsson, A.X. Gray, D.Eiteneer, A.M. Kaiser, G. Conti, A.Y. Saw, A. Perona, A. Rattanachata, C. Conlon, A. Bostwick, V. Strocov, M. Kobayashi, W.Stolte, A. Gloskovskii, W. Drube, M.-C. Asencio, J. Avila, J. Son, P. Moetakef, C. Jackson, L. Bjaalie, A. Janotti, C. G. Van de Walle, J. Minar, J. Braun, H. Ebert, J.B. Kortright, S. Stemmer, and C. S. Fadley

The Advanced Light Source

The STO/GTO 2D Electron Gas

Can we see this 2DEG with standing wave ARPES, including its momentum dispersion and its depth distribution?

Calculated carrier density (cm⁻²) Khalsa and McDonald PRB 86, 125121 (2012)

2×1014

2.× 1014

mid

4×1014

5.9× 1014

high

Multilayer GTO/STO

Multilayer GTO/STO

P. Moetakef, S. Stemmer, UCSB

Electronic structure of bulk GdTiO₃-LDA+hybrid functionals

4 bands compose LHB, one e- for each Ti

L. Bjaalie, A. Janotti, C. Van de Walle M32.7

ALS BL 7.0.2

Standing-wave rocking curves: Ti 2p spectra, 1182 eV

Nemšák et al.

STO/GTO Standing-Wave ARPES @ 833 eV, 20 K

STO/GTO multilayer – Peak 1, 1' compared to 2DEG on STO

Creation and control of a two-dimensional electron liquid at the bare SrTiO₃ surface

W. Meevasana^{1,2,3,4,5†}, P. D. C. King^{3†}, R. H. He^{1,2,6}, S-K. Mo^{1,6}, M. Hashimoto^{1,6}, A. Tamai³, P. Songsiriritthigul^{4,5}, F. Baumberger³ and Z-X. Shen^{1,2*}

 $I = 0.3 \text{ W cm}^{-2}$

 $D = 326 \, \text{J cm}^2$ Ó

k (Å⁻¹)

-0.3

0.3

Same scales

Nature Materials <u>10</u>, 114 (2011)

 \rightarrow 1 looks like interface 2DEG, but where is lower **Hubbard band?**

STO/GTO multilayer-Dispersion of Peaks 1 and 1' : ARPES @ 465.2 eV (Ti resonant)

1, 1' dispersions identical, states strongly mixed

• 1 has greater or different Ti character

ALS

Theoretical simulations vs. expt.—1182-just below Gd M_5 edge SW emphasizng STO

 \rightarrow Ti 4+ in STO, Ti 3+ in GTO, 1' = LHB in GTO

Theoretical simulations vs. expt.—1187-just above Gd M₅ edge SW emphasizng STO/GTO interface

 \rightarrow Peak 1 = 2DEG & 2DEG occupies the full STO layer

Theory/expt. comparison: (STO)₅(GTO)₂ superlattice

Conclusions: Standing-Wave and Resonant XPS and ARPES of SrTiO₃/GdTiO₃

- k-resolved bands of GTO LHB and 2DEG, evidence for intermixing of the two
- 2DEG extends through the entire STO layer from standingwave rocking curve analysis
- Results consistent with 2DEG tunneling subband spacing measurements and tight binding- or LDA + hybrid functional- calculations
- Rocking curve forms very sensitive measure of depth distributions near buried interfaces → future applications to other systems
- Bilayer data identify critical thickness for 2DEG formation

CSF and S. Nemšák,, J. Electron Spect. , <u>195</u>, 409–422 (2014); S. Nemšák, et al., Appl. Phys. Lett. 107 (23), 231602, 2015; <u>http://arxiv.org/abs/1508.01832</u>

Soft →hard x-rays and standing waves: a few example studies

Fe/MgO-tunnel junction

Depth-resolved composition, chemical states,

magnetization

SrTiO₃/La_{2/3}Sr_{1/3}MnO₃-tunnel junction Depth-resolved composition, dielectric properties, bonding, k-resolved electronic structure

> SrTiO₃/GdTiO₃-2D electron gas Depth-resolved composition, charge states, k-resolved electronic structure

Fe₂O₃ reacting with NaOH, CsOH, and H₂O

Using standing wave XPS to probe the solid/gas and solid/liquid

interface: some first ambient pressure results

BiFeO₃/(Ca,Ce)MnO₃ interface (Ferroelectric/Mott insulator) Depth-resolved electronic structure from near-total-reflection (NTR) angle scans

Standing wave photoemission from a liquid-like layer: CsOH and NaOH on Fe₂O₃

S. Nemšák, A. Shavorskiy, O. Karslioglu, I. Zegkinoglou, A. Rattanachata, C.S. Conlon, A. Keqi, P.K. Greene, E.C. Burks, K. Liu, F. Salmassi, E.M. Gullikson, S.-H. Yang, K. Liu, H. Bluhm, C.S.F., Nature Comm. 5, 5441 (2014).

The Advanced Light Source

Hendrik

+Samples: Liu Group UCD +Mirrors: CXRO LBNL

Slavo

Andrey

Ioannis

Aru

Catherine

Armela

Osman

Standing-wave photoemission at the solid-liquid interface: some first experiments at ambient pressure

Standing-wave photoemission at the solid-liquid interface: some first experiments at ambient pressure

ALS BL 11.0.2

 \rightarrow Clearly four components in O 1s from rocking curve data

→ Clear differences in position and wings of Cs and Na, indicating different depth distributions

Final structure optimization after fitting x-ray optical calculations to rocking curves

Final structure and the standing wave

Depth-dependent binding energies and the standing wave

Conclusions: Standing Wave Ambient Pressure Photoemission (SWAPPS) of NaOH + CsOH + H₂O on Fe₂O₃

From standing-wave rocking curves of all elements present:

- Fe₂O₃ surface--effective roughness of ~6 Å, agrees with AFM
- Na⁺: average distance ~5.5 Å above Fe₂O₃, total distribution over ~11 Å
- Cs⁺: larger average distance of ~9.5 Å above Fe₂O₃, total distribution over ~12 Å → Cs⁺ and Na⁺ separated by ~ 5 Å.
- Low-binding-energy C: very thin ~5 Å layer on the surface of the sample →hydrocarbons?
- High-binding-energy C: spread over the entire depth range of the "wet" layer, H₂O+CO₂ → carboxylic or bicarbonate?
- OH⁻ + H₂O: Very nearly the same depth distribution
- Quantitative analysis for atomic concentrations possible
- Depth-dependent binding energies → depth dependent chemistry and potentials
- Provided that the sample can be grown on a multilayer mirror, SWAPPS a powerful new technique for looking at solid/solid and solid/liquid interaces, with resolution ~ ± 2 Å

S. Nemšák, et al., Nature Comm. 5, 5441 (2014)
Soft →hard x-rays and standing waves: a few example studies

Fe/MgO-tunnel junction

Depth-resolved composition, chemical states,

magnetization

SrTiO₃/La_{2/3}Sr_{1/3}MnO₃-tunnel junction Depth-resolved composition, dielectric properties, bonding, k-resolved electronic structure

> SrTiO₃/GdTiO₃-2D electron gas Depth-resolved composition, charge states, k-resolved electronic structure

Fe₂O₃ reacting with NaOH, CsOH, and H₂O Using standing wave XPS to probe the solid/gas and solid/liquid interface: some first ambient pressure results

BiFeO₃/(Ca,Ce)MnO₃ interface (Ferroelectric/Mott insulator) Depth-resolved electronic structure from near-total-reflection (NTR) angle scans You don't need a multilayer!: Depth-resolved electronic structure at the BiFeO₃/(Ca,Ce)MnO₃ interface (Ferroelectric/Mott insulator) from near-total-reflection (NTR) angle scans

J. E. Rault, M. Marinova, S. Nemšák, G. K. Palsson, J.-P. Rueff, CSF, A. Gloter, C. Carrétéro, H. Yamada, K. March, V. Garcia, S. Fusil, A. Barthélémy, M. Bibes, O. Stéphan and C. Colliex, Nano Letters 15, 2533–2541 (2015).

The Advanced Light Source

Conclusions: Overall

- Combining soft and hard x-ray photoemission, with standing-wave excitation and resonant effects, is a powerful new suite of techniques for studying buried layers and interfaces, including solid/gas and solid/liquid at ambient pressures, and core-shell nanoclusters
- Future possibilities include:
 - -Using hard x-rays for deeper interfaces and higher ambient pressures
 - -Identifying particular angles/photon energies for different SW positions and doing time-dependent studies
 - -For few-layer samples, or those which cannot be grown on a suitable mirror, going into total reflection, where standing waves are again produced
 - -Varying polarization to select different orbital contributions, magnetism (via PMCD and XMCD)
 - [-Doing the measurement in a photoelectron microscope (scanning photon energy) provides lateral resolution over devices (Gray, Kronast, et al., APL 97,062503 (2010))]