Hard x-ray and standing-wave excitation as probes of bulk properties and buried layers and interfaces: applications to spintronic systems and strongly correlated oxides

Chuck Fadley Dept. of Physics, UC Davis awrence Berkeley National Laborator

Supported by: **DOE: LBNL Materials Sciences Division** ARO-MURI: "Emergent Phenomena at Mott Interfaces" **Jülich Research Center**

> Seminar at the University of Rome Three June 30, 2011

Hard x-ray and standing-wave excitation as probes of bulk properties and buried layers and interfaces: applications to spintronic systems and strongly correlated oxides

technische universität dortmund

¹Physics, UC Davis; ²Mat. Sci. Div., LBNL; ³SPring8; ⁴NIMS; ⁵HZB-BESSY Berlin; ⁶IBM Almaden; ⁷Research Center Jűlich; ⁸Physics, Tech. Univ. Dortmund; Physics; ⁹Mat. Sci., UC Berkeley; ¹⁰Univ. of Twente; ¹¹ALS, LBNL; ¹²Physical Chem., Univ. Munich; ¹³ Hasylab, Hamburg; ¹⁴UC Santa Barbara; Present addresses: *Univ. Erlangen, ⁺Univ. Mainz; [#]Otterbein Coll.

Emergent Phenomena at Mott Interfaces - Multidisciplinary University Research Initiative

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

keV

<mark>8-</mark>9

keV

9

Ø

m

keV

6

Ø

 \mathbf{m}

 \mathbf{M} 00

500-700 eV

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for: W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for: W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø m keV 6 Ø \mathbf{m} \mathbf{M} 00

500-700 eV

Photoemission: Some limitations, some new directions

Core photoemission \rightarrow XPS, X-ray photoelectron diffraction-XPD,... Valence photoemission \rightarrow UPS, SXPS Higher energy a/o temperature \rightarrow Densities of states-DOSs Lower energy a/o temperature \rightarrow Band mapping, Angleresolved photoemission-ARPES are very powerful techniques, but they:

> are sometimes too strongly influenced by surface effects, if bulk or buried layer/interface properties are to be studied

> may not be able to selectively and <u>quantitatively</u> see buried-layer and interface properties

Two ways to address these limitations:

> use <u>harder x-ray excitation</u> (HAXPES, HXPS) for deeper probing: core (HXPD) and valence DOSs or hard x-ray ARPES ("HARPES")

> use soft and hard x-ray standing waves to selectively look below the surface, including depth-resolved ARPES

X-ray photoemission: some key elements

Why do we want to go to 5-10 keV in XPS?

Tanuma, Powell, Penn, Surf. and Interf. Anal. <u>43</u>, 689 (2011)

Hard x-ray photoemission—plusses and minusses

•Plusses

•More bulk sensitive spectra \rightarrow a versatile tool for any new material or multilayer nanostructure

 Inelastic background less important & Augers more widely spread, less overlap

•Less radiation damage

•Easier interpretation of angle-resolved data \rightarrow surface and bulk information

•Easier quantitative analysis via core spectra

•New "bulk fingerprint" satellite effects seen in both core and valence spectra

 Magnetic circular and linear dichroism and spin-resolved spectra for magnetic systems

•Bulk DOS info. at highest energies and temperatures or

•3d "bulk" band mapping ARPES capability with cryocooling

• Hard x-ray photoelectron diffraction promising: dopants, lattice distortions

•Strong reflectivity and standing wave effects for depth-resolved properties

•Higher pressures possible in ambient pressure experiments, even windowed cell

Minusses

 Cross sections low, need special undulatorbeamline/spectrometer combinations—several solutions \rightarrow 1 micron focus and 10 meV resolution

 Intensity calculations must allow for photon wave vector, other non-dipole effects, but easy

•High *n*, low- ℓ cross section components strongly favored, but in VB they can be more involved in transport

•Resolution not as good as VUV PS, but as good/better than SX PS, and down to 50 meV overall, even lower, good enough for many applications

•Phonon effects reduce capability for **ARPES** at higher energies/temperatures

•Recoil energy limits resolution, esp. for lighter elements; complex systematics, depending on local bond distances/phonon frequencies \rightarrow Doppler spectroscopy?

Photoemission: Some limitations, some new directions

Core photoemission \rightarrow XPS, X-ray photoelectron diffraction-XPD,... Valence photoemission \rightarrow UPS, SXPS Higher energy a/o temperature \rightarrow Densities of states-DOSs Lower energy a/o temperature \rightarrow Band mapping, Angleresolved photoemission-ARPES are very powerful techniques, but they:

> are sometimes too strongly influenced by surface effects, if bulk or buried layer/interface properties are to be studied

> may not be able to selectively and <u>quantitatively</u> see buried-layer and interface properties

Two ways to address these limitations:

> use <u>harder x-ray excitation</u> (HAXPES, HXPS) for deeper probing: core (HXPD) and valence DOSs or hard x-ray ARPES ("HARPES")

> use soft and hard x-ray standing waves to selectively look below the surface, including depth-resolved ARPES

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0 67} Sr_{0 33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for: W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø N \mathbf{M} keV 6 Ø \mathbf{m} \mathbf{M}

500-700 eV

00

X-ray photoemission: some key elements

Quantitative analysis of peak intensities using theoretical cross sections (Scofield): $La_{0.7}Sr_{0.3}MnO_3$, hv = 7700 eV

Fadley, J. Electr. Spect. 178-179 (2010) 2-32

Mn magnetic moment change: bulk or surface effect? **Compare soft and hard x-ray data** Temperature dependence of Mn2p spectra: La_{0.7}Sr_{0.3}MnO₃

 \rightarrow Suggests bulk electronic structure not reached until ca. 8 nm depth

Offi et al., PRB <u>77</u>, 174422 ('08))-ESRF

Electronic Structure of Strained Manganite Thin Films with Room Temperature Ferromagnetism Investigated by Hard X-ray Photoemission Spectroscopy: La_{0.85}Ba_{0.15}MnO₃

Strain/Mag netismassociated screening feature

Change in Mn 3s splitting (magnetic moment) is smaller for higher energy excitation, but still exists: suggests stronger effect near surface, but some depth penetration

Presence of "bulk" magnetism-associated screening features on on both Mn 3s and 3p features

Offi et al., PRB <u>77</u>, 174422 ('08)-ESRF

Normalized to non-magnetic core levels

Derivation of density-of-states information from core-normalized HXPS valence-band spectra

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₂

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for: W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø N \mathbf{M} keV 6 Ø \mathbf{m} \mathbf{M} 00

500-700 eV

Band Gap and Electronic Structure of an Epitaxial, Semiconducting Cr_{0.80}Al_{0.20} Thin Film

Resistivity of $Cr_{1-x}Al_x$ thin films vs. concentration at 2 K. Inset: Resistivity of Cr_{0.78}Al_{0.22} vs. temperature. What happens to the electronic structure?

Boekelheide, Gray, et al., PRL 105, 236404 (2010)-SPring8

Cr and Epitaxial, Semiconducting Cr_{0.80}Al_{0.20} Thin Films: **Core and Valence Spectra (DOS limit)**

Binding Energy (eV)

Boekelheide, Gray, et al., PRL 105, 236404 (2010)-SPring8

PHOTOELECTRON INTENSITIES: DOS LIMIT D

Cr and Epitaxial, Semiconducting Cr_{0.80}Al_{0.20} Thin Films: **Core and Valence Spectra (DOS limit)**

Boekelheide, Gray, et al., PRL 105, 236404 (2010)-SPring8

Cr and Epitaxial, Semiconducting Cr_{0.80}Al_{0.20} Thin Films: Valence Spectra (DOS limit), compared to Au standard

Boekelheide, Gray, et al., PRL 105, 236404 (2010)-SPring8

Cr and Epitaxial, Semiconducting Cr_{0.80}Al_{0.20} Thin Films: LDA theory, with CPA approximation

Boekelheide, Gray, et al., PRL 105, 236404 (2010)—Theory, D. Stewart, Cornell

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy

keV

6-8

keV

9

Ø

m

keV

6

Ø

 \mathbf{m}

 \mathbf{M} 00

500-700 eV

metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for: W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

LaNiO₃ Thin films: Insulator-to-Metal Transition Induced by Strain

Epitaxial layers with TEM thickness det'n. (Junwoo Son, James LeBeau)

LNO/LSAT ~ 7 unit cells = 2.7 nm

LNO/LAO ~ 7 unit cells = 2.8 nm

LNO/LSAT ~ 12 unit cells = 4.6 nm

Eight samples

LNO/LAO	LNO/LSAT		
Thickness	Thickness		
(nm)	(nm)		
2.8	2.7		
4.2	4.6		
11.1	10.7		
17.6	16.0		

Conductivity (Stemmer, Allen et al.)

Gray, Janotti, et al., Phys. Rev. B, to appear-SPring8

Son et al., Appl. Phys. Lett. 96, 062114 (2010); 97, 202109 2010

LNO: Prior soft x-ray photoemission \rightarrow What's expected with soft \rightarrow hard x-rays?

Atomic photoelectric cross sections/electron

Level	Photon energy: 80 eV	800 eV	1.0 keV	2.0 keV	6.0 keV
Ni 3d (8 e ⁻)	7.9E6/ 8 = 1.91	4.9E4/ 8 = 11.13	21654.9/ 8 = 10.17	1838.9/ 8 = 10.30	23.5/ 8 = 9.26
O 2p (4 e ⁻)	2.06E6/ 4 = 1.00	2200/ 4 = 1.00	1065.14/ 4 = 1.00	89.30/ 4 = 1.00	1.27/ 4 =1.00

FIG. 4. (Color online) Comparison between experimental PES spectra and calculated DOS for LaNiO₃ bulk crystal and strained films.

Horiba et al., PHYSICAL REVIEW B 76, 155104 (2007)

Simple model says: Ni 3d dominant from soft to hard x-ray energies

Yeh, Lindau; Scofield

Broad Hard X-ray Photoemission (HAXPES) Survey: High Binding Energies, LNO (2.8 nm) on LAO

Gray, Janotti, et al., Phys. Rev. B, to appear-SPring8

Typical Broad HAXPES Survey: Low Binding Energies, LNO (2.8 nm) on LAO

Gray, Janotti, et al., Phys. Rev. B, to appear-SPring8

LNO on LAO -1.32 % compressive strain

Substrate Core Level HAXPES Intensities: LNO/LAO

Effective Attenuation Lengths (EALs) from Core-Level HAXPES

- **Measurement of substrate peak** intensity dependence on overlayer thickness \rightarrow effective attenuation lengths EAL
- LNO EALs from both substrates are in agreement with each other to ~5-10%
- EALs within 20% of the semiempirical TPP-2M formula if corrected for elastic scattering **Remaining experiment/theory** discrepancy may be due to lack of resonant absorption edges in theory – not considered previously

Effective Attenuation Lengths (EALs) from Core-Level HAXPES

- **Measurement of substrate peak** intensity dependence on overlayer thickness \rightarrow effective attenuation lengths EAL
- LNO EALs from both substrates are in agreement with each other to ~5-10%
- EALs within 20% of the semiempirical TPP-2M formula if corrected for elastic scattering
- **Remaining experiment/theory** discrepancy may be due to lack of resonant absorption edges in theory – not considered previously

Gray, Janotti, et al., Phys. Rev. B, to appear-SPring8

- ement of substrate peak sity dependence on overlayer

LNO and substrates: thickness-dependent density of states

- Decomposition of valence spectra into film and substrate DOS using EALs and $I_{t} = (1 - exp(-t/I_{EAL}))I_{film,t} + exp(-t/I_{EAL})I_{subst,t}$
- DOS for thinnest 2.7 nm LNO film on LSAT differs from others, with greater effect for LSAT substrate that is consistent with conductivity results (Stemmer et al.)
- Similar result for 1.7 nm LNO on LAO from XPS at 1.5 keV (H. Wadati, G. A. Sawatzky)
- Theory with hybrid functional does well for LAO & LSAT, not so well for strained bulklike LNO \bullet (Janotti and Van der Welle)

Gray, Janotti, et al., to be published
LaNiO₃ Thin films: Insulator-to-Metal Transition-Soft X-ray PS

R. Sutarto, H. Wadati, G. A. Sawatzky, Canadian Light Source

LaNiO₃ Thin films: Insulator-to-Metal Transition Induced by Strain a/o Interface Effects

Epitaxial layers with TEM thickness det'n. (Junwoo Son, James LeBeau)

LNO/LSAT ~ 7 unit cells = 2.7 nm

LNO/LAO ~ 7 unit cells = 2.8 nm

LNO/LSAT ~ 12 unit cells = 4.6 nm

Eight samples

LNO/LAO	LNO/LSAT
Thickness	Thickness
(nm)	(nm)
2.8	2.7
4.2	4.6
11.1	10.7
17.6	16.0

Conductivity (Stemmer, Allen et al.)

Son et al., Appl. Phys. Lett. 96, 062114 (2010); 97, 202109 (2010) Gray, Janotti, et al., Phys. Rev. B, to appear-SPring8

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for: W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø N m keV 6 Ø \mathbf{m} \mathbf{M} 00

500-700 eV

X-ray photoemission: some key elements

Emission angle $\rightarrow k_{\star}$

Photoelectron diffraction with hard x-ray excitation: 1000 eV \rightarrow 10,000 eV, the first theoretical study

Qualitative expectations: Forward scattering peak strengths f(0) ~ **constant Overall scattering cross section** $\sigma = \int f d\Omega$ decreases

K.A. Thompson and C.F. J. Elect. Spect. <u>33</u>, 29 ('84)

No vibration

Hard X-Ray Photoelectron Diffraction: **Basic Systematics and Modeling**

The scattering of photoelectrons from localized sources can be described in real space (multiple scattering cluster) and reciprocal space (dynamical theory of electron diffraction)

cluster of scattering atoms

reflecting lattice planes

A.Winkelmann, J. Garcia de Abajo, C.F., Journal of Physics <u>10</u> (2008) 113002

Photoelectron Diffraction with soft and hard x-ray excitation: two viewpoints, expt. vs. theory

Photoelectron Diffraction with soft and hard x-ray excitation: expt. vs. Kikuchi-band theory

Experiment

STO/LSMO Multilayer Mn 3p emission E = 793eV hv = 833.2 eV

Photoelectron Diffraction with soft and hard x-ray excitation: expt. vs. Kikuchi-band theory

Experiment

STO/LSMO Multilayer Mn 3p emission E = 793eV hv = 833.2 eV

XPD Kikuchi-Band Theory

LSMO 5nm Film "bulk" Mn emission E = 793eV hv = 833.2 eV

Theory: A. Winkelmann

Hard x-ray photoelectron diffraction--Theory: Sensitivity to lattice distortions and atomic site type?

Si(111)-6 keV: Impurity atom on lattice site (Si) vs. tetrahedral interstitial (T)

A. Winkelman, J. Garcia de Abajo, **MPI Halle, CF, New Journal of** Physics 10 (2008) 113002

Missing Kikuchi bands-->"forbidden reflections"

→Future experiment?: Crystal Bragg standing waves for x-rays in plus Kikichi band/standing waves for electrons out

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for: W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø N \mathbf{M} keV 6 Ø \mathbf{m} \mathbf{M}

00

500-700 eV

X-ray photoemission: some key elements

Valence-band photoemission: **Angle-Resolved Photoemission (ARPES)**

$$E_{f}(\vec{K}_{f}) = \vec{k}_{f,||} = \vec{K}_{f,||}$$

$$E_{f}(\vec{k}_{f}) - V_{0} \approx \hbar^{2} K_{f}^{2} / 2m_{e} \vec{K}_{f}$$

$$h_{V}$$

$$K_{f,||} = \vec{K}_{f,||}$$

$$E_{f}(\vec{k}_{f}) \approx h_{V} - E_{i}(\vec{k}_{i}) \approx \hbar^{2} k_{f}^{2} / 2$$

$$\vec{g}_{bulk}(and / or \vec{g}_{surf})$$

$$\vec{k}_{f} = \vec{k}_{i} + \vec{g}_{bulk}(+\vec{g}_{surf}) + \vec{k}_{hv} + \vec{k}_{pl}$$

$$High energy$$

$$High tenergy$$

$$E_{i}(\vec{k}_{i})$$

$$I(E_{f},\vec{k}_{f}) \propto \left| \hat{\epsilon} \cdot \left\langle \varphi_{photoe}(E_{f} = h_{V} + E_{i},\vec{k}_{f} = \vec{k}_{i} + \vec{g}) \right| \vec{r} \right| \varphi(E_{i}$$
"Direct" or k-conserving transitions

/2me

Angle-Resolved Photoemission at High Energy--How high can we go?:

DIRECT TRANSITIONS IN XPS OF TUNGSTEN

• Lattice recoil \rightarrow phonon creation \rightarrow more B.Z. averaging,

Fraction DTs \approx Debye-Waller factor = $W(T) \approx exp[-(k^f)^2 < u^2(T) >]$

 $\approx \exp[-C_1 (k^f)^2 T / (m \Theta_D^2)] \approx \exp(-C_2 E_{kin} T)$

→the "XPS limit" of full B.Z. averaging and D.O.S. sensitivity

→core-like photoelectron diffraction
Alvarez

• Recoil leads to peak shifts and broadening: $E_{recoil}(eV) \approx \left[\frac{m_e}{M}\right] E_{kin} \approx 5.5 \times 10^{-4} \left[\frac{E_{kin}(eV)}{M(amu)}\right]$

Tungsten--Debye-Waller Factor and Recoil Energy

0.7

L. Plucinski, et al. PRB <u>78</u>, 035108 (2008)

Angle-Resolved Photoemission (ARPES) with soft x-rays: W(110) at 860 eV

ARPES with a <u>non-monochromatized lab. x-ray source</u>: $h_V = 1253.6 \text{ eV}$, T = ~77K, W = 0.82

Tungsten--Debye-Waller Factor and Recoil Energy

For W(110): $h_V = 5,946 eV$: Where are we in the Brillouin Zone? Calculation of Photon Momentum Effect on k Conservation

The free-electron picture:

For W(110): $h_V = 5,946 eV$: Where are we in the Brillouin Zone? Calculation of Photon Momentum Effect on k Conservation

The free-electron picture:

W(110), $h_V = 5,954 \text{ eV}$, T = 30K: Comparison to one-step theory, matrix elements

GaAs doped with Mn: a magnetic semiconductor Ga_{0.96}Mn_{0.04}As--HXPS: T = 20K, Broad Survey

Samples: Stone, Dubon Expt.-Gray, Papp, Ueda, Yamashita, Kobayashi **Theory- Pickett, Ylvisaker**

GaMnAs-HXPS: T = 20K, Mn 2p

Additional data as a function of concentration from Fujii, Panaccione, et al.

- ·1° Averages
- No obvious dependence on angle
 - hv = 3238.12 eV $\Theta = 2.0^{\circ}$ T = 20K

GaMnAs--HXPS: T = 20K, Mn 3s

Calibration collection of Mn 3s splittings for various oxides

Galakhov et al., PRB 65, 113102 (2002)

K.W. Edmonds et al., Phys. Rev. B 71, 064418

PRL 100, 247202 (2008)

Hard x-ray ARPES from GaAs(001)-3.2 keV, 30 K, W = 0.31

Theory- Pickett, Ylvisaker

Comparing Experiment and One-Step KKR Theory GaAs

GaAs

Gray, Papp, Ueda, Minar, Kobayashi, et al., Nature Materials, to appear

- -

Nature Materials, to appear

HARPES-How high can we go? **Photoemission Debye-Waller Factors and Recoil Energies**

Hard x-ray photoemission—plusses and minusses

•Plusses

•More bulk sensitive spectra \rightarrow a versatile tool for any new material or multilayer nanostructure

 Inelastic background less important & Augers more widely spread, less overlap

•Less radiation damage

•Easier interpretation of angle-resolved data \rightarrow surface and bulk information

•Easier quantitative analysis via core spectra

•New "bulk fingerprint" satellite effects seen in both core and valence spectra

 Magnetic circular and linear dichroism and spin-resolved spectra for magnetic systems

•Bulk DOS info. at highest energies and temperatures or

•3d "bulk" band mapping ARPES capability with cryocooling

• Hard x-ray photoelectron diffraction promising: dopants, lattice distortions

•Strong reflectivity and standing wave effects for depth-resolved properties

•Higher pressures possible in ambient pressure experiments, even windowed cell

Minusses

 Cross sections low, need special undulatorbeamline/spectrometer combinations—several solutions \rightarrow 1 micron focus and 10 meV resolution

 Intensity calculations must allow for photon wave vector, other non-dipole effects, but easy

•High *n*, low- ℓ cross section components strongly favored, but in VB they can be more involved in transport

•Resolution not as good as VUV PS, but as good/better than SX PS, and down to 50 meV overall, even lower, good enough for many applications

•Phonon effects reduce capability for **ARPES** at higher energies/temperatures

•Recoil energy limits resolution, esp. for lighter elements; complex systematics, depending on local bond distances/phonon frequencies \rightarrow Doppler spectroscopy?

Photoemission for properties of bulk materials and complex multilayer heterostructures in spintronics

Core photoemission \rightarrow XPS, X-ray photoelectron diffraction-XPD,... Valence photoemission \rightarrow UPS, SXPS Higher energy a/o temperature \rightarrow Densities of states-DOSs Lower energy a/o temperature \rightarrow Band mapping, Angleresolved photoemission-ARPES are very powerful techniques, but they:

> are sometimes too strongly influenced by surface effects, if bulk or buried layer/interface properties are to be studied

> may not be able to selectively and <u>quantitatively</u> see buried-layer and interface properties

Two ways to address these limitations:

> use <u>harder x-ray excitation</u> (HAXPES, HXPS) for deeper probing: core (HXPD) and valence DOSs or hard x-ray ARPES ("HARPES")

> use soft and hard x-ray standing waves to selectively look below the surface, including depth-resolved ARPES

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for: W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization:

SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer

Fe/MgO tunnel junction

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø N \mathbf{M} keV 6 Ø \mathbf{m} \mathbf{M}

500-700 eV

00

X-ray photoemission: some key elements

5.9 keV 🦎

Some x-ray optical effects at 6 keV-theory, exchange bias system

Standing Wave Behavior During a Rocking Curve Scan

+Same general forms if photon energy is scanned

With thanks to Martin Tolkiehn, Dimitri Novikov, Hasylab

Relative phase

Case study: Standing wave/rocking curve analysis of an epitaxial SrTiO₃/La_{0.67}Sr_{0.33}MnO₃ interface: Resonant soft x-ray excitation

Standing wave/rocking curve analysis of an epitaxial SrTiO₃/La_{0.67}Sr_{0.33}MnO₃ interface: hard x-ray excitation

Experiments: A. Gray, C. Papp, S. Ueda, Y. Yamashita, K. Kobayashi, C.F., SPring8

Kiessig 31.1 Å period

the rocking curves, esp. 5.9 A. Gray et al.

SrTiO_{3/}La_{0.67}Sr_{0.33}MnO₃ Multilayer **Analysis of Rocking Curves**

Fitting of Rocking Curves—All Elements Present, Soft and Hard X-rays

A. Gray et al., Phys. Rev. B 82, 205116 (2010)

Fitting of Rocking Curves—All Elements Present, Soft and Hard X-rays

A. Gray et al., Phys. Rev. B 82, 205116 (2010)

Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers

L. Fitting Kourkoutis^{a,1}, J. H. Song^{b,c}, H. Y. Hwang^{c,d}, and D. A. Muller^{a,e}

11682–11685 | PNAS | June 29, 2010 | vol. 107 | no. 26

~Consistent with **TEM-EELS** imaging of other PLD-grown STO/LSMO multilayers

See also Samet et al.. Eur. Phys. J. B 34, 179–192 (2003) DOI: 10.1140/epjb/e2003-00210-8

Fig. 2. Spectroscopic-imaging of La_{0.7}Sr_{0.3}MnO₃/SrTiO₃ multilayers grown at $P_{O2} = 1$ m torr and at a laser spot size of (A and B) 7.5 and (C and D) 1.6×10^{-2} cm². (A and C) La elemental maps and (B and D) red-green-blue false color B-site maps, obtained by combining the Ti (red) and Mn (green and blue) maps extracted from the spectrum images. The multilayer grown with a smaller laser spot size shows less abrupt interfaces and an extended defect, marked by a white arrow in D. The growth direction is from bottom to top.

STO/LSMO-Resonant soft x-ray standing wave/rocking curves at 833 eV: core photoelectron peaks compared to calculated standing-wave field

near surface

The Advanced **Light Source**

STO/LSMO-Explaining the Difference Between Mn 3p and Mn 3s behavior

EXPERIMENT

Bulk LSMO Interface LSMO

ANDERSON IMPURITY MODEL www.anorg.chem.uu.nl/CTM4XAS/Updates

Crystal-Field Distortion (Ds = 0.2 eV)

F. de Groot

SrTiO₃ and La_{0.67}Sr_{0.33}MnO₃ band structures and DOS SrTiO₃-insulator Zheng, Binggeli, J. Phys. Cond. Matt. 21, 115602 $La_{0.67}Sr_{0.33}MnO_{3}$ -(2009) Projected DOSs sr1i0: Half-Metallic 05 **Ferromagnetic** Spin-up metal $E_{\rm F}$ Mn e_g Zero! Mn t_{2g} τ_{2q} Expt'l. bandgap 3.3 eV = 0.24 Ry **Binding Energy** -01 -02 6 Spin-up Spin-down Ľ 8 X Г Г Wave vector Wave Vector 3d e_g states of Mn Mattheiss, PRB <u>6</u>, 4718 (1972) Chikamatsu et al.,

PRB 73, 195105 (2006)

Soft x-ray valence cross sections for Mn and O

As for LaNiO₃, the TM (= Mn) 3d dominates over O 2p in the keV regime

http://ulisse.elettra.trieste.it/services/elements/WebElements.html

STO/LSMO-Standing wave/rocking curves of valence region: 833 eV, 300K

The Advanced Light Source

Prior resonant PS: Fujimori et al., J.A.P 99, 08S903 (2006)

Standing-wave angle-resolved photoemission

Variation of Θ **:** Change of incidence angle ⇒Standing wave effect

Variation of β: Change of takeoff angle \Rightarrow measure electrons with different k-vector

k-space mapping with scanned standing wave

Detector angle $\rightarrow k_x$ **Core levels**: XPD

Detector angle $\rightarrow k_x$ Valence bands: ARPES

Depth-Resolved ARPES?

Beamline 7.0 ALS With A. Bostwick, E. Rotenberg

Depth-Resolved ARPES?

Sample: Huijben, Ramesh Experiment: Gray, Papp, Rotenberg, Bostwick, Ueda, Yamashita, Kobayashi Theory: Minar, Braun, Ebert, Plucinski, Yan

LSMO Bulk sensitive point E along the rocking curve

RAW DATA

Photoelectron Diffraction with soft and hard x-ray excitation: two viewpoints, expt. vs. theory

Experiment

STO/LSMO Multilayer Mn 3p emission E=793eV hv = 833.2 eV

XPD Kikuchi-Band Theory

LSMO 5nm Film "bulk" Mn emission E=793eV hv = 833.2 eV

Theory: A. Winkelmann

Correcting buried LSMO layer ARPES for XPD

LSMO Bulk sensitive point E along the rocking curve

CORRECTED FOR XPD

LSMO Bulk sensitive point E along the rocking curve

CORRECTED FOR XPD

First comparison to one-step photoemission theory for LSMO

First comparison to one-step photoemission theory for LSMO

"Bulk" experiment:

LSMO Bulk sensitive point E along the rocking curve

CORRECTED FOR XPD

LSMO Interface sensitive point C along the rocking curve

BERKELEY LAB

rrrrrr

CORRECTED FOR XPD

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for:W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: $SrTiO_3/La_{2/3}Sr_{1/3}MnO_3$ multilayer Fe/MgO tunnel junction

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø m keV 6 Ø \mathbf{m} \mathbf{M} 00

500-700 eV

Probing Buried Interfaces With X-ray Standing Waves: The standingwave/wedge (SWEDGE) method

Example: The MgO/Fe magnetic tunnel junction interface

 $\lambda_{sw}(|E^2|) =$ $\lambda_x/2\sin\theta_{inc}$ **1st order Bragg:** $\lambda_{x} = 2d_{ML} \sin \theta_{Bragg}$

Soft x-ray standing-wave wedge scans through a magnetic tunnel junction

S.Döring, F. Schonbohm, U.Berges, M. Gorgoi, C. Westphal, D. Buergler, C. Schneider, C. Papp, B. Balke, C. Felser, C.F. Phys. Rev. B 83, 165444 (2011)
X-Ray Optical Analysis of Hard X-Ray Wedge Scans--hv = 4.0 keV

S. Döring et al., Phys. Rev. B 83, 165444 (2011)

Standing wave/wedge analysis of an Fe/MgO tunnel junction multilayer: final fits of expt. to x-ray optical calcs.

Yang, Balke et al., PRB, submitted

MgO/Fe tunnel junctionthe real interface

Meyerheim PRL 87, 076102 (2001).

•Is there FeO at the interface? •What is the density of states at the interface? • Δ_1 controls tunneling? Can we see bands at epitaxial interfaces? (Future project)

in tunneling for ideal interface

Butler et al., PRB <u>63</u>, 054416 (2001)

Self-consistent x-ray optical modeling of layer-resolved valence spectra

$$I_{\text{VB},i=1,2,..N}\left(E_{\text{kin},j}, d_{\text{Fe},i}\right) \cong C \sum_{L=layer} \tilde{D}_{L}\left(E_{\text{kin},j}\right) \int_{z\in L} \left|E\left(z, d_{\text{Fe},i}\right)\right|^{2} \exp\left[-z / \left(\Lambda_{e,L} \sin \left(z, d_{e,L} \sin z\right)\right) \right] = C \sum_{L} \tilde{D}_{L}\left(E_{\text{kin},j}\right) \int_{0}^{\infty} W_{L}\left(z, d_{\text{Fe},i}\right) dz$$

$$I_{\text{VB},i}\left(E_{\text{kin}}, d_{\text{Fe},i}\right) \cong C \sum_{L} \tilde{D}_{L}\left(E_{\text{kin}}\right) U_{L}\left(d_{\text{Fe},i}\right)$$
with $\tilde{D}_{L}\left(E_{\text{kin},j}\right)$ = matrix-element weighted density of states in layer L
$$M_{12}O_{3} = \begin{bmatrix} 1 & 10 & 0 & 0 & 0 \\ 0.8 & 9 & 0 & 0 & 0 \\ 0.6 & 9 & 0 & 0 & 0 \\ 0.2 & 50 & 0 & 0 & 0 \end{bmatrix}$$

(م ۲

 $d_{\rm Fe}$

Standing wave/wedge derivation of depth-dependent densities of states: Fe/MgO tunnel junction

 $\tilde{D}_{L}(E_{kin,i})$ = matrix-element weighted density of states in layer L

DOS (arb. unit) DOS (arb. unit)

Yang, Balke, et al., PRB, submitted

Standing wave/wedge derivation of depth-dependent densities of states: Fe/MgO tunnel junction

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for:W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays, depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope, adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø N m keV 6 Ø \mathbf{m} \mathbf{M} 00

500-700 eV

Adding depth resolution to the photoelectron microscope via standing wave excitation

Standing wave effects in a photoelectron microscope

F. Kronast, H. Dürr, **BESSY** D. Buergler, R. Scheiber,C. Schneider, Jülich Yang, IBM, CF, Appl. Phys. Lett. **93**, 243116 (2008)

Surfing the waves in a photoelectron microscope-1 μ Co nanodots

SEM- 1μ Co dots with 1μ spacing

> Photon energy scan through Bragg resonance: C 1s, Al 2p, Co 3p, and Si 2p images

A. Gray, F. Kronast, C. Papp, et al., Appl. Phys. Lett. <u>97</u>, 062503 (2010)-BESSY

Al 2p

2 nm Al

Scanning

Schneider, Westphal, Ramesh,-**Dortmund, BESSY**

GMR, exchange biassing, tunnel junction, oxide multilayers **Ultrathin** gate oxide, **Oxynitride**, other films

Clusters, Self-assembled monolayers, **Polymer films**, **Proteins**

Liquid layers,

Three-dimensional spectromicroscopy Kronast, Y Schneider, -BESSY **Fischer-ALS**

Outline

Photoemission: Some limitations, some new directions

Hard x-ray photoemission of interesting bulk materials \rightarrow core and valence spectra: half-metallic/colossal magnetoresistive La_{0.67} Sr_{0.33} MnO₃ semiconducting CrAl alloy metal-to-insulator transition in thin-film LaNiO₃

Angle-resolved hard x-ray photoemission \rightarrow HXPD: Kikuchi-band modeling, and HARPES for:W, GaAs & the magnetic semiconductor (Ga,Mn)As

Standing-wave photoemission combining soft and hard x-rays \rightarrow depth-resolved composition, densities of states and ARPES, and magnetization: SrTiO₃/La_{2/3}Sr_{1/3}MnO₃ multilayer **Fe/MgO tunnel junction**

Standing-waves in a photoelectron microscope \rightarrow adding the third dimension: multilayers and microdots

Conclusions and Future Outlook

keV <mark>8-</mark>9 keV 9 Ø m keV 6 Ø \mathbf{m} \mathbf{M} 00

500-700 eV

Conclusions and Future Outlook

- → Hard x-ray photoemission (HAXPES, HXPS) probes to average depths of ca. 50-100 Å, up to 10x typical XPS
 - Bulklike composition and electronic structure, buried layers and interfaces, a rapidly growing aspect of photoemission: $La_{0.67}Sr_{0.33}MnO_3$ --T dep. Electronic structure, CrAI semiconducting gap, LaNiO₃ thin-film metal-insulator transition
 - Angle-resolved core-level (HXPD): new element-specific structure probe, with Kikuchi-band modeling, and bulk-sensitive valence-band mapping (HARPES) possible up to several keV: W, GaAs, GaMnAs. Should be applicable to many materials up to a few or more keV
- → Excitation with <u>soft and hard x-ray</u> standing waves from multilayer Bragg reflections:
 - Additional depth sensitivity in photoemission: ca. $\pm 2-3$ Å in concentration, core-level chemical shifts, and magnetization: SrTiO₃/La_{0.67}Sr_{0.33}MnO₃, Fe/MgO
 - Depth-dependent densities of states and band structure (ARPES): SrTiO₃/La_{0.67}Sr_{0.33}MnO₃, Fe/MgO
 - High sensitivity to properties of multilayer mirror: gradient in bilayer thicknesses of only ca. 6%, SrTiO₃/La_{0.67}Sr_{0.33}MnO₃
 - Resonant excitation to enhance reflectivity and standing wave strength: SrTiO₃/La_{0.67}Sr_{0.33}MnO₃
 - Additional depth sensitivity in photoelectron microscopy: Co/Ag bilayer and Co microdots
- → Many future applications of both: Complex and strongly correlated bulk materials, spintronics→tunnel junction-CoFeB/MgO (with Ohno), Mott oxide-LaNiO₃/SrTiO₃ (with Stemmer), multiferroic- BiFeO₃/SrTiO₃ (with Huijben),...

Recent overviews:

S.-H. Yang, B.C. Sell, and C.S.F., J. Appl. Phys. 103, 07C519 (2008)

C.S.F., Journal of Electron Spectrosc. 178–179, 2 (2010)

X-ray photoemission: some key elements

